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Abstract 

In this article, vehicle cornering stability and brake stabilization via bifurcation analysis has been 

investigated. In order to extract the governing equations of motion, a nonlinear four-wheeled vehicle model 

with two degrees of freedom has been developed. Using the continuation software package MatCont a 

stability analysis based on phase plane analysis and bifurcation of equilibrium is performed and an optimal 

controller has been proposed. Finally, simulation has been done in Matlab-Simulink software considering a 

sine with dwell steering angle input, and the effectiveness of the proposed controller on the aforementioned 

model has been validated with Carsim model. 
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1. Introduction 

Significant research and consecutive 

developments have been done to enhance vehicle 

handling and stability. Among them, yaw moment 

control has proved its impact to improve handling and 

stability of conventional and electric vehicles under 

severe driving conditions [1,2]. The necessity for 

developing yaw moment control can be observed by 

examining the driver’s inexperience to control the 

vehicle directional dynamics during critical 

maneuvers. For instance, in a turning maneuver with 

high lateral acceleration, where tire lateral forces are 

at the limit of road adhesion, the vehicle lateral 

velocity increases and the potency of the tire for 

generating a yaw moment is considerably reduced 

because of the saturation of tire lateral force. The 

decrease in generating yaw moment may cause an 

unstable motion of the vehicle, i.e. the spin out. 

Providing the required compensating yaw moment 

will therefore restore the stability of the vehicle.  

For vehicle dynamics control, the yaw moment 

control is studied as an approach of controlling the 

directional motion of a vehicle during severe driving 

maneuvers. To meet this goal a control strategy based 

on the vehicle dynamics state-feedbacks, as well as an 

actuation system, is required. According to the 

present technology, the performance of vehicle 

dynamics control actuation mechanisms is based on 

the control of braking force on each wheel 

individually known as the differential braking that can 

be achieved using the main parts of the common anti-

lock braking systems [3,4].  

In general, design of the required control system 

based on the measured or estimated variables to attain 

the desired performance is an attracting field of 

research. Many researchers in the last decade have 

reported direct yaw moment control as one of the 

most effective methods, which could significantly 

recover the vehicle stability and controllability. They 

have proposed various control methods, including, 

optimal control [5,6], fuzzy logic control [7],    

yaw-moment control [8], internal model control [9], 

multi-objective control [10], linear-quadratic 

regulator (LQR) and sliding mode control [11], etc.  

This paper concerns with the optimal controller 

design for a nonlinear two-degree-of-freedom (2-

DOF) vehicle directional dynamics model considering 

vehicle lateral velocity and yaw rate as state feedback 

variables. The focus of the paper is to design a state 

feedback control law based on stability regions 

obtained from bifurcation diagrams. Hence, this paper 

is organized as follows. In section 2, in order to 

evaluate the dynamic behavior of the vehicle, a 

nonlinear 2-DOF vehicle model is constructed. Then, 

the continuation software package MatCont is used in 

section 3 to perform a stability analysis based on 

phase plane analysis and bifurcation of equilibria, and 

stability regions are determined for different vehicle 

speeds. Next, the control problem is formulated in 

section 4, considering a linear 2-DOF vehicle model 
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as the controller model. In section 5, simulation 

results are shown for different steering maneuvers. 

Finally, conclusions are presented in section 6. 

2. Vehicle and tire model 

2.1. 2-DOF vehicle model for simulation 

2-DOF vehicle handling model is a classical 

model used to define the vehicle directional motion in 

a turning maneuver commonly. In this system 

equation, vehicle longitudinal velocity is assumed 

constant, and tire tractive force and air resistance are 

ignored, as shown in Figure 1. 

 

 

 

Fig1. . Plan view of the vehicle dynamics model 

 

2.2. Tire Model 

 

Tire lateral forces greatly affect the 

maneuverability of the vehicle and also have an 

important influence on the vehicle nonlinear 

dynamics system and its stability. The modeled tire is 

a non-linear tire based on the Pacejka Magic Formula 

[12], formulated as: 
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where α is the tire side slip angle and B, C, D, E 

are coefficients directly related to tire normal 
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The constants used in the above relations are listed 

in Table 1 [12]. 

An input quantity for the tire lateral force 

calculations is the normal load on each tire. If the 

vehicle is considered as a rigid body as a whole, load 

transfer due to the longitudinal and lateral 

accelerations can be determined. According to this 

approach that divides the load transfer in the front and 

rear proportional to their static loads [11], the 

individual normal forces are given by: 
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Another variable of the tire cornering force 

function is the tire side slip angle, α, and can be 

calculated for each wheel as below [11]: 

The constants used in the above relations are listed 

in Table 1 [12]. 
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3. Phase plane analysis and bifurcation of 

equilibria 

Using the specifications data of the case study 

vehicle, the phase plot at 0 radians of front steer angle 

is shown in Figure 2.a. These phase plots describe the 

propagation of the states for a relatively wide range of 

initial states. The red points represent solutions for 

equilibrium points. Equilibrium solutions are the roots 

of the state space equations. In other words, they are 

states where  ̇   ̇   . In this plot, a stable 

equilibrium solution at     and     clearly exists. 

Stability of this solution can be qualitatively 

determined as multiple trajectories propagate toward 

this point. There also exists two saddle point 

equilibrium solutions. Figure 2.b shows the phase plot 

at 0.03 radians of front steer angle. The stable 

equilibrium point has migrated towards a positive  

 

yaw rate and a negative lateral velocity. All three 

equilibrium points are still present. At 0.06 radians of 

front steer (Figure 2.c), the stable equilibrium point 

and one saddle point have disappeared, leaving only 

the other saddle point. This represents a bifurcation 

with respect to steer angle somewhere between 0.03 

and 0.06 radians. A bifurcation is a qualitative change 

in the system with respect to a certain variable. In this 

case, the qualitative change due to increase in front 

wheel steer angle was a loss of two equilibrium 

solutions. 

Figures 3.a and 3.b developed by the continuation 

software package MatCont [13] are the bifurcation 

diagrams for front steer angle as the varying 

parameter. Figure 3.a shows the values of lateral 

velocity,  , for each of the equilibrium points in the 

phase plot as    is varied. Figure 3.b shows the 

corresponding diagram for yaw rate, r, as    is varied. 

Stable equilibrium solutions are identified in solid 

lines, and unstable points (saddle points in this case) 

are identified in dotted lines. At a front steer angle of 

0 radians, there are three equilibrium points. As front 

steer angle is increased the stable point and one 

saddle point converge and disappear forming a saddle 

node bifurcation (SN) [14]. As front steer angle is 

increased past the bifurcation point, only one saddle 

point remains in the negative yaw direction. This is 

unusual for a vehicle steering to the right. The 

negative yaw equilibrium point is unstable and relates 

to a “drifting” vehicle. This is a condition where the 

vehicle develops enough lateral velocity in the turn 

that steering the wheels in the opposite direction of 

the yaw rate will orient the wheels in the direction of 

velocity. Drifting is commonly thought of as an 

extreme case of oversteer, the phase plots show it 

more accurately as an unstable equilibrium condition 

with the vehicle turning in the opposite direction of 

the steer angle. 

 
Table 1. Magic Formula Constants 
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Fig2. . Phase plots at u=20 m/s; 

(a)   =0 rad, (b)   =0.03 rad, (c)   =0.06 rad 
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Fig3. Bifurcation of equilibria diagrams, (a) Lateral Velocity (b) Yaw Rate 

 

 

Fig4. Variations of the values of feedback gains with vehicle longitudinal velocity 
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4.Controller design 

A commonly used linear two-degree of freedom 

model for vehicle handling is developed. The 

governing linearized equations (1) for the yaw and 

lateral motions of the vehicle model, in the state-

space form, are derived as [11]: 

where 

 

For the vehicle model, the lateral velocity, v, and 

the yaw rate, r, are considered as the two state 

variables while the yaw moment,   , is the control 

input, which must be determined from the control 

law. Moreover, the vehicle steering angle,   , is 

considered as the external disturbance.  

 

2. Optimal handling performance index 4.1. 

It has been stated before that enhanced steerability 

and stability are the two important aspects of the 

optimum vehicle handling. One could hence define 

the cost functional or the performance index for the 

optimum road handling of a vehicle in the following 

form: 

 

where      and      are the bifurcation values of 

lateral velocity and the yaw rate of the vehicle 

obtained from figures 3.a and 3.b, respectively. In 

accordance to the above definition, the term (      ) 
in the performance index is a measure of the vehicle 

steerability. Minimization of this term leads the 

vehicle to a neutral steer and stable behavior.  

4.2. Structure of the control law 

The control law consists of two state variable 

feedback terms being those of the yaw rate and the 

lateral velocity. Thus the control law that minimizes 

the performance index in order to achieve the 

optimum handling behavior can be defined as: 

To determine the values of the feedback control 

gains,     and   , which are based on the defined 

performance index and the vehicle dynamic model, a 

LQR controller has been formulated for which its 

analytical solution is obtained [5]. In that case, the 

performance index of Eq. (8) may be rewritten in the 

following form: 

where 

Considering matrices A, B, R and Q, the matrix P 

is found by solving the continuous-time Riccati 

algebraic equation. Since both controllability and 

observability matrices are full rank, Eq. (11) has an 

exclusive, symmetric and positive definite solution as 

follows:  

                  

                          [
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The corresponding expanded equations can 

therefore be solved analytically in order to determine 

the values of the feedback gains: 

where 

The other components of the matrix P can now be 

expressed as a function of    : 
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State feedback gain matrix is defined as: 

 
According to Eqs. (7) to (15), the values of the 

feedback gains can hence be expressed as: 
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The variation of the optimal values of the 

feedback gains with the vehicle longitudinal velocity, 

for different values of the weighting factor   is shown 

in Figure 4.

 

It can be seen from Figure 4. that the yaw rate 

gain    is always negative and its magnitude 

increases rapidly with the increase in vehicle 

longitudinal velocity u. On the other hand, the 

magnitude of the yaw rate gain decreases when the 

value of   increased. The lateral velocity gain    has 

positive values and the variation of its magnitude with 

u and   are quite similar to   , but its magnitude is 

relatively smaller than    to some extent that can be 

neglected. The values of the feedback gains found are 

then substituted back into Eq. (9) to obtain the 

optimal control law. It has been shown that the 

dynamic performance of the controller is extremely 

sensitive to the values of the weighting factor  . 

Therefore, the weighting factor should be determined 

such that the compensating yaw moment would 

always remain below its admissible value to avoid 

wheel-lock during every cornering maneuver. As 

mentioned before, the external yaw moment is 

exerted via braking force on the wheels based on the 

direction of turn and whether the vehicle is over 

steering or under steering: 

 

Turning right + over steering:  Front-Left wheel  

 

Turning left + over steering:   Front-Right wheel 

 

Turning left + under steering:  Rear-Left wheel 

 

Turning right + under steering:  Rear-Right wheel 

 

 

5. Simulation Results 

Computer simulations are conducted to verify the 

effectiveness of the proposed controller. Simulation 

results are carried out using the nonlinear 2DOF 

vehicle model and the simulation software based on 

Matlab and Simulink. Figure 5 shows the structure of 

control system. The main goal of the control system is 

to make the actual yaw rate to follow the bifurcation 

value of yaw rate in a specific longitudinal velocity in 

order to prevent vehicle spin out. Another purpose is 

to limit magnitude of braking force to guarantee the 

wheel not to be locked.  

Figure 6 illustrates the BSC Simulink module. 

This module uses differential braking to ensure that 

the vehicle retains its directional stability. 

Figures 8 and 9 show the simulation results for 

vehicle behavior comparison between the proposed 

vehicle model and a co-simulated full vehicle model 

in Carsim [11]. The effectiveness of the designed 

controller is validated considering four different 

steering angle amplitudes in a sine with dwell steering 

maneuver shown in Figure 7. It can be observed that 

for both vehicle model, the responses of the yaw rate 

and the lateral acceleration successfully follow their 

desired values. Although the trends are more realistic 

for a full vehicle model, it is confirmed that the 

stability of the vehicle can significantly be guaranteed 

with the proposed controller. Moreover, any increase 

in steering wheel angle amplitude will lead to 

increase in yaw rate difference and consequently 

increase in braking force on tire. This procedure can 

finally cause a decrease in performance of controller 

as it is well seen in higher amplitudes. 

 

 

 

 
 

Fig5.  Block diagram of control system
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Fig6. BSC Simulink module 

 
Fig7. Steering input for a sine with dwell maneuver 

 
Fig8. . Variation of validated yaw rate for different steering wheel angle amplitudes; 

   =75 deg, (b)    =80 deg, (c)    =85 deg, (d)    =90 deg 
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Fig9. Figure 9. Variation of validated lateral acceleration for different steering wheel angle amplitudes; 

(a)    =75 deg, (b)    =80 deg, (c)    =85 deg, (d)    =90 deg 

 

6. Conclusion 

The control algorithm used in this work in order to 

stabilize the vehicle under unstable conditions, uses a 

concept similar to that of other available controllers 

used in vehicle dynamics control systems with two 

considerable difference. The proposed optimal 

controller can be equipped with a stable region 

instead of tracking the control variables at any time. 

The data of stability regions are obtained from a 

bifurcation of equilibria analysis. In the meantime, by 

proper selection of the weighting factor and an 

appropriate design of the control law, in order to 

minimize the performance index, not only an 

excellent handling behavior is achieved, but also 

physical limits like wheel lock are also satisfied. 
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